domingo, 25 de dezembro de 2016

O Grande Cometa de 1680

O cometa C/1680 V1, também conhecido como o Grande Cometa de 1680, Cometa de Kirch e Cometa de Newton, foi o primeiro cometa descoberto por telescópio.

Grande Cometa de 1680

© Lieve Verschuier (Grande Cometa de 1680)

O Grande Cometa de 1680 ficou imortalizado nesta pintura, onde aparece com uma enorme cauda na época de Natal sobre os céus de Rotterdam, Holanda.

O Grande Cometa de 1680 foi descoberto por Gottfried Kirch em 14 de novembro de 1680. Foi um dos mais brilhantes cometas do século XVII, visível mesmo à luz do dia, famoso por sua longa cauda. Passando apenas a 0,42 UA da Terra em 30 de Novembro, e a 0,0062 UA (930 mil km) do Sol em 18 de Dezembro de 1680. Apesar de ter sido inegavelmente um cometa rasante solar (Sungrazing), provavelmente não era parte da família Kreutz. Após o periélio, o cometa reapareceu no crepúsculo, no horizonte oeste, a partir do dia 19 de Dezembro, com uma cauda dourada espetacular que atingiu no seu auge cerca de 70 graus de comprimento alargando-se suavemente como um leque até 3 graus de largura na extremidade. O cometa atingiu o seu pico de brilho em 29 de dezembro. Foi observado pela última vez em 19 de Março de 1681. Em Setembro de 2012 o cometa estava a cerca de 253 UA do Sol.

Enquanto o cometa Kirch foi descoberto e, posteriormente, nomeado para Gottfried Kirch, deve-se também ser dado crédito a Eusebio Kino, um padre jesuíta espanhol, que traçou o curso do cometa. Após sua partida para o México ser adiada, Kino começou suas observações do cometa em Cádiz, em 1680. Após a sua chegada na Cidade do México, participou da "Exposisión Astronomica de el cometa" (Cidade do México, 1681) em que apresentou suas descobertas. A exposição de Kino, é um dos primeiros trabalhos científicos publicados por um europeu no Novo Mundo.

Além de seu brilho, foi também o primeiro cometa a ter a sua órbita determinada, provavelmente é mais conhecido por ser utilizado por Isaac Newton para testar e verificar as leis de Kepler. Newton desenvolveu um método para o cálculo das órbitas dos cometas com base nas suas posições medidas no firmamento e exemplificou a sua utilização com a determinação da órbita para o C/1680 V1. Este método viria a ter uma importância fundamental no estudo dos cometas, tendo sido utilizado com sucesso por um outro astrônomo inglês da época, Edmond Halley, na descoberta de que alguns cometas são periódicos.

Thomas Rutherford, em 1748, supôs que este cometa já havia aparecido antes: ele teria um período de cerca de 575 anos, e suas aparições anteriores teriam sido em 44 a.C. (o cometa de César, no ano do seu assassinato), 531, observado por João Malalas, e em 1106 (o grande cometa de 1106), no reinado de Henrique I da Inglaterra. Sua próxima aparição ocorrerá no ano 2255.

Fonte: Wikipédia

terça-feira, 27 de setembro de 2016

Fogo de artifício no cometa da Rosetta

Explosões breves mas poderosas vistas no cometa 67P/Churyumov-Gerasimenko, no ano passado, durante o seu período mais ativo, foram rastreadas de volta às suas origens na superfície.

explosões no cometa Churyumov-Gerasimenko

© ESA/Rosetta (explosões no cometa Churyumov-Gerasimenko)

Nos três meses centrados em torno da aproximação mais adjacente do cometa ao Sol, a 13 de agosto de 2015, as câmaras da Rosetta captaram 34 explosões (outbursts).

Estes eventos violentos foram para além de jatos regulares e fluxos de material observados a fluir do núcleo do cometa. O último interruptor contínuo com repetibilidade de um relógio de uma rotação do cometa para a seguinte, sincronizou com o nascer e pôr-do-Sol.

Por outro lado, as explosões são muito mais brilhantes do que a dos habituais jatos, projeções de poeira súbitas, breves e de alta velocidade. Elas são tipicamente vistas apenas numa única imagem, indicando que têm uma vida útil mais curta do que o intervalo entre as imagens, tipicamente de 5 a 30 minutos.

Pensa-se que numa explosão típica são liberadas, naqueles poucos minutos, de 60 a 260 toneladas de material.

Em média, as explosões ao redor da abordagem mais próxima do Sol ocorreram uma vez a cada 30 horas, cerca de 2,4 rotações do cometa. Com base na aparência do fluxo de poeira, podem ser divididas em três categorias.

Um tipo está associado com um jato longo, estreito que se estende para longe do núcleo, enquanto o segundo envolve uma base ampla e larga que se expande mais lateralmente. A terceira categoria é um híbrido complexo dos outros dois tipos.

"Como qualquer projeção é de curta duração e apenas captada numa imagem, não podemos dizer se foi fotografada logo após a explosão ter começado ou mais tarde no processo", observa Jean-Baptiste Vincent, autor principal do artigo publicado na revista Monthly Notices of the Astronomical Society.

Assim, não podemos dizer se esses três tipos de 'formatos' em pluma correspondem a diferentes mecanismos, ou apenas a diferentes etapas de um único processo.

Mas se apenas um processo está envolvido, em seguida, a sequência evolutiva lógica é que um jato de pó estreito e longo é inicialmente ejetado a alta velocidade, muito provavelmente de um espaço confinado.

Em seguida, à medida que a superfície em torno do ponto de saída é modificada, uma fração maior de material fresco fica exposto, alargando a base em pluma.

Finalmente, quando a região da fonte fica de tal forma alterada que já não é capaz de suportar mais o jato estreito, apenas uma pluma ampla sobrevive.

A outra questão-chave é como essas explosões são acionadas.

Foi descoberto que pouco mais de metade dos eventos ocorreu em regiões correspondentes ao início da manhã, quando o Sol começou a aquecer a superfície, depois de muitas horas na escuridão.

Pensa-se que a rápida mudança na temperatura local desencadeia tensões térmicas à superfície que poderiam levar a uma fratura repentina e exposição de material volátil. Este material aquece rapidamente e vaporiza explosivamente.

Os outros eventos ocorreram após o meio-dia local , depois da iluminação de algumas horas.

Essas explosões são atribuídas a uma causa diferente, onde o calor acumulado atinge bolsos contendo materiais voláteis enterrados sob a superfície, mais uma vez causando um súbito aquecimento e uma explosão.

"O fato de termos claramente explosões da manhã e ao meio-dia aponta para pelo menos duas maneiras diferentes de desencadear uma explosão", diz Jean-Baptiste.

Mas é também possível que ainda outra causa esteja envolvida em algumas explosões.

"Descobrimos que a maioria das explosões parece ter origem nas fronteiras regionais do cometa, lugares onde há mudanças na textura ou topografia do terreno local, tais como penhascos íngremes, buracos ou nichos", acrescenta Jean-Baptiste.

A existência de pedras e outros detritos em torno das regiões identificadas como as fontes das explosões confirma que estas áreas são particularmente suscetíveis à erosão.

Enquanto se pensa que as superfícies das falésias em corrosão lenta sejam responsáveis por algumas das características dos jatos normais e de longa duração, uma borda de um penhasco enfraquecido pode também, de repente, entrar em colapso a qualquer momento, dia ou noite. Este colapso iria revelar quantidades substanciais de material fresco e poderia levar a uma explosão, mesmo quando a região não está exposta à luz solar.

Pelo menos um dos eventos estudados ocorreu num local que se encontrava na escuridão e pode estar relacionado com o colapso de uma falésia.

"Estudar o cometa durante um longo período de tempo deu-nos a oportunidade de olhar para a diferença entre a atividade 'normal' e explosões de curta duração, e como estas explosões podem ser desencadeadas", diz Matt Taylor, cientista do projeto Rosetta da ESA.

"Estudar como estes fenômenos variam consoante o cometa progride ao longo da sua órbita em torno do Sol dá-nos uma nova visão de como os cometas evoluem durante as suas vidas."

Fonte: ESA

sábado, 17 de setembro de 2016

Hubble olha a desintegração de um cometa

O telescópio espacial Hubble captou uma nítida desintegração de um cometa, que ocorreu a 108 milhões de quilômetros da Terra.

cometa 332P Ikeya-Murakami

© Hubble (cometa 332P/Ikeya-Murakami)

Em uma série de imagens tomadas em um período de três dias em Janeiro de 2016, o Hubble revelou 25 blocos constituídos por uma mistura de gelo e poeira que estão à deriva longe do cometa em um ritmo calmo, com a velocidade de caminhada de um adulto (4 km/h).

As observações sugerem que o cometa, chamado 332P/Ikeya-Murakami, de cerca de 4,5 bilhões de anos de idade, pode estar girando tão rápido que o material está sendo ejetado de sua superfície. Os detritos resultantes estão agora dispersos ao longo de uma trilha de quase 5 mil quilômetros.

Estas observações fornecem discernimento sobre o comportamento volátil dos cometas que se aproximam do Sol e começam a vaporizar, desencadeando forças dinâmicas. O cometa 332P/Ikeya-Murakami estava a cerca de 241 milhões de quilômetros do Sol, um pouco além da órbita de Marte, quando o Hubble avistou o seu rompimento.

"Nós sabemos que os cometas às vezes se desintegram, mas não sabemos muito sobre o porquê ou como eles se separam," explicou o pesquisador David Jewitt, da Universidade da Califórnia em Los Angeles. "O problema é que isso acontece de forma rápida e sem aviso, e por isso não tem muita chance de obter dados úteis. Por causa da fantástica resolução do Hubble, não só vemos realmente pequenos pedaços do cometa, mas podemos observar sua mudança ao longo do tempo. Isto possibilitou fazer as melhores medições já obtidas sobre tal objeto".

As observações de três dias revelaram que os fragmentos do cometa iluminam e ofuscam como fragmentos de gelo em suas superfícies girando para dentro e para fora sob incidência da luz solar. Suas formas mudam e também eles se separam. As relíquias geladas compreendem cerca de 4% do cometa original e variam em tamanho de cerca de 20 a 60 metros de largura; elas estão se afastando umas das outras a alguns quilômetros por hora.

As imagens do Hubble mostram que o cometa original também muda de brilho ciclicamente, completando uma rotação durante duas a quatro horas. Um visitante do cometa iria ver o Sol nascer e se pôr em tão pouco tempo, em torno de uma hora. O cometa também é muito menor do que era estimado, medindo apenas 488 metros de diâmetro, o comprimento de cinco campos de futebol.

O cometa 332P/Ikeya-Murakami foi descoberto em novembro de 2010, depois que ele apresentou aumento de brilho, por dois astrônomos amadores japoneses, Kaoru Ikeya e Shigeki Murakami.

Com base nos dados do Hubble, a equipe sugere que a luz solar aquece o cometa, fazendo com que os jatos de gás e poeira entrem em erupção de sua superfície. Porque o núcleo é tão pequeno, estes jatos agem como motores de foguete, rotacionando o cometa. A taxa de rotação mais rápida solta pedaços de material, que estão à deriva no espaço.

A equipe calculou que o cometa provavelmente lançou material ao longo de vários meses, entre outubro e dezembro de 2015. Jewitt sugere que alguns dos pedaços ejetados têm caído em uma espécie de cascata de fragmentação. "Nossa análise mostra que os fragmentos menores não são tão abundantes como se poderia esperar com base no número de pedaços maiores", disse ele. "Isto sugere que eles estão sendo esgotados, mesmo nos poucos meses desde que foram lançados a partir do corpo principal. Achamos que estes elementos pequenos têm uma vida útil curta."

A visão afiada do Hubble também avistou um pedaço de material do cometa, o que pode ser o primeiro indício de outra explosão. O remanescente ainda realizou outro lampezo, que pode ter ocorrido em 2012, e também é visível. O fragmento pode ser tão grande quanto o cometa, o que sugere a divisão em dois cometas. Mas o resto de gelo só foi descoberto em 31 de dezembro de 2015, pelo telescópio Pan-STARRS (Panoramic Survey Telescope and Rapid Response System) localizado no Havaí, no trabalho apoiado pela Near-Earth Object Observations. Na mesma época, os astrônomos de todo o mundo começaram a notar um fragmento de material nebuloso perto do cometa, que depois o Hubble notou contituir em 25 pedaços.

A melhor visão anterior do Hubble de um cometa fragmentando veio através das observações da Advanced Camera for Surveys (ACS) do cometa 73P/Schwassmann-Wachmann 3 em abril de 2006. Nestas observações o Hubble testemunhou um cometa com mais de 60 fragmentos. As imagens do Hubble mostrou detalhes sem precedentes da dissolução do cometa 73P/Schwassmann-Wachmann 3, mas não foi observado o tempo suficiente para documentar a evolução dos fragmentos ao longo do tempo, ao contrário do caso do cometa 332P/Ikeya-Murakami.

Estima-se que o cometa 332P/Ikeya-Murakami contém massa suficiente para aguentar mais 25 explosões. Se o cometa tem um episódio a cada seis anos, o equivalente a uma órbita em torno do Sol, em seguida, ele se dissolverá em 150 anos.

O visitante gelado vem do Cinturão de Kuiper, um vasto enxame de objetos na periferia de nosso Sistema Solar. Estas relíquias geladas são os blocos de construção que sobraram de nosso Sistema Solar. Depois de quase 4,5 bilhões de anos congelado, o cometa 332P/Ikeya-Murakami foi lançado para fora do Cinturão de Kuiper, por causa de perturbações gravitacionais caóticas de Netuno.

Como o cometa viajou por todo o Sistema Solar, foi desviado pelos planetas, como uma bola quicando em torno de uma máquina de pinball, até que a gravidade de Júpiter definiu sua órbita atual. Jewitt estima que um cometa do Cinturão de Kuiper é jogado no interior do Sistema Solar a cada 40 a 100 anos.

Os resultados foram publicados no Astrophysical Journal Letters.

Fonte: Space Telescope Science Institute

segunda-feira, 8 de agosto de 2016

Como os cometas nascem

Uma análise detalhada dos dados recolhidos pela Rosetta mostra que os cometas são remanescentes antigos da formação do Sistema Solar e não fragmentos mais jovens resultantes de colisões subsequentes entre outros corpos maiores.

cometa Churyumov-Gerasimenko

© ESA/Rosetta (cometa 67P/Churyumov–Gerasimenko)

Compreender como e quando objetos como o cometa 67P/Churyumov–Gerasimenko tomaram forma é de extrema importância na determinação exata de como podem ser usados para interpretar a formação e evolução precoce do nosso Sistema Solar.

Se os cometas são primordiais, então podem ajudar a revelar as propriedades da nebulosa solar a partir da qual o Sol, os planetas e outros corpos pequenos se condensaram há 4,6 bilhões de anos atrás, e os processos que transformaram o nosso sistema planetário na arquitetura que vemos hoje.

A hipótese alternativa é que seriam fragmentos mais jovens resultantes de colisões entre corpos "parentes" mais velhos como por exemplo objetos transnetunianos. Poderiam, então, fornecer mais dados sobre o interior desses corpos maiores, das colisões que os perturbaram e o processo de construção de novos corpos a partir de outros mais velhos.

"De qualquer maneira, os cometas têm sido testemunhas de importantes acontecimentos na evolução do Sistema Solar, e é por isso que fizemos estas medições detalhadas com a Rosetta, juntamente com observações de outros cometas, para descobrir qual o cenário mais provável," afirma Matt Taylor, cientista do projeto Rosetta da ESA.

Durante a sua estadia de dois anos no Cometa 67P/Churyumov–Gerasimenko, a Rosetta revelou uma imagem do astro como sendo de baixa densidade, alta porosidade, com lóbulos duplos e vastas camadas, sugerindo que os lóbulos acumularam material ao longo do tempo antes de se fundirem.

A invulgarmente alta porosidade do interior do núcleo fornece a primeira indicação de que este crescimento não pode ter sido através de colisões violentas, pois estas teriam compactado o material frágil. As estruturas e características em diferentes escalas de tamanho observadas pelas câmaras da Rosetta providenciam ainda mais informações sobre a forma como este crescimento pode ter ocorrido.

Trabalhos anteriores mostraram que a cabeça e corpo eram objetos originalmente separados, mas a colisão que os fundiu deve ter sido a baixa velocidade a fim de não destruir ambos. O fato de que ambas as partes têm camadas semelhantes também nos diz que devem ter sido submetidas a histórias evolutivas semelhantes e que as taxas de sobrevivência contra colisões catastróficas devem ter sido altas durante um significativo período de tempo.

Os eventos de fusão também devem ter acontecido em escalas menores. Por exemplo, foram identificadas três zonas esféricas na região Bastet, no pequeno lóbulo do cometa, que sugerem que são remanescentes de cometesimais mais pequenos ainda hoje preservados parcialmente.

A escalas ainda menores, de apenas alguns metros, existem as características denominadas "goosebumps" e "torrões", texturas ásperas observadas em várias fossas e paredes expostas de penhascos em vários locais no cometa.

Embora seja possível que esta morfologia possa surgir, por si só, apenas de fraturas, na verdade pensa-se que represente uma "granulosidade" intrínseca dos componentes do cometa. Ou seja, estes "goosebumps" podem mostrar o tamanho típico dos cometesimais mais pequenos que se acumularam e se fundiram para criar o cometa, tornados visíveis novamente hoje através da erosão devido à luz solar.

De acordo com a teoria, as velocidades a que estes cometesimais colidem e se fundem muda durante o processo de crescimento, com um pico quando os nódulos têm tamanhos de alguns metros. Por esta razão, pensa-se que as estruturas com tamanhos de um metro sejam as mais compactas e resistentes, o que é particularmente interessante dado que o material do cometa parece irregular, especificamente, nesta escala de tamanho.

Outras linhas de evidência incluem análises espectrais da composição do cometa, que mostram que a superfície sofreu pouca ou nenhuma alteração "in situ" por água líquida, e análises dos gases expelidos por sublimação de gelos enterrados abaixo da superfície, o que indica que o cometa é rico em supervoláteis como o monóxido de carbono, oxigênio, nitrogênio e argônio.

Estas observações sugerem que os cometas se formaram em condições extremamente frias e que não sofreram um processo térmico significativo durante a maior parte das suas vidas. Ao invés, para explicar as baixas temperaturas, a sobrevivência de certos gelos e a retenção de supervoláteis, devem ter sido acumulados lentamente ao longo de um grande período de tempo.

"Ao passo que outros grandes objetos transnetunianos nos confins do Sistema Solar parecem ter sido aquecidos por substâncias radioativas de curta duração, os cometas não parecem mostrar sinais similares de processamento térmico. Tivemos que resolver este paradoxo, observando detalhadamente a linha de tempo dos nossos modelos atuais do Sistema Solar, e considerar ideias novas," salienta Björn Davidsson do JPL (Jet Propulsion Laboratory), Instituto de Tecnologia da Califórnia em Pasadena (EUA).

Björn e colegas propõem que os membros maiores da população de objetos transnetunianos formaram-se rapidamente no primeiro milhão de anos da nebulosa solar, ajudados por correntes turbulentas de gás que aceleraram rapidamente o seu crescimento para tamanhos de até 400 km.

A aproximadamente três milhões de anos na história do Sistema Solar, o gás tinha desaparecido da nebulosa solar, deixando apenas material sólido para trás. Então, ao longo de um período muito maior de aproximadamente 400 milhões de anos, os já enormes objetos transnetunianos acretaram, lentamente, mais material e foram submetidos a compactação em camadas, por exemplo, os seus gelos derreteram e recongelaram. Alguns objetos transnetunianos até cresceram para objetos do tamanho de Plutão ou Tritão, o maior satélite natural de Netuno.

Os cometas tomaram um caminho diferente. Após a fase inicial de crescimento rápido dos objetos transnetunianos, os remanescentes grãos e diminutas pedras de material gelado nas partes frias e exteriores da nebulosa solar começaram a unir-se a velocidades baixas, produzindo cometas com mais ou menos 5 km de tamanho até ao ponto em que o gás desaparece da nebulosa solar. As velocidades baixas a que o material foi acumulado levaram a objetos com núcleos frágeis, altamente porosos e de densidade baixa.

Este crescimento lento também permitiu com que os cometas preservassem algum do material mais antigo, rico em voláteis, da nebulosa solar, uma vez que foram capazes de libertar a energia gerada pelo decaimento radioativo no seu interior sem aquecer demais.

Os objetos transnetunianos desempenharam mais outro papel na evolução dos cometas. Ao agitarem as órbitas cometárias, o material adicional foi acretado a velocidades um pouco maiores ao longo dos 25 milhões anos seguintes, formando as camadas exteriores dos cometas. A agitação também tornou possível a ligeira colisão entre objetos com vários quilômetros de tamanho, levando à natureza duplamente lobular de alguns cometas observados.

"Os cometas não parecem mostrar as características esperadas para pilhas de escombros resultantes de colisões, que resultam da quebra de objetos maiores como objetos transnetunianos. Em vez disso, pensamos que cresceram suavemente à sombra dos objetos transnetunianos, sobrevivendo essencialmente intactos durante 4,6 bilhões de anos," conclui Björn.

"O nosso novo modelo explica o que vemos nas observações detalhadas do cometa da Rosetta, e o que já havia sido sugerido por missões cometárias anteriores."

"Os cometas são realmente os tesouros do Sistema Solar," acrescenta Matt Taylor.

"Eles dão-nos uma visão sem precedentes sobre os processos que foram importantes na construção planetária durante estes primeiros tempos e como estão relacionados com a arquitetura do Sistema Solar que vemos hoje."

O novo estudo que aborda esta questão foi publicado no periódico Astronomy & Astrophysics.

Fonte: ESA

Últimos instantes de um cometa

Os últimos momentos da vida de um cometa foi captado numa sequência de imagens obtidas observatório espacial SOHO (Solar and Heliospheric Observatory).

instantes finais de um cometa

© ESA/NASA/SOHO (instantes finais de um cometa)

Na animação o círculo branco representa os limites do disco solar. Nota-se um pequeno cometa atravessando a coroa solar a uma velocidade vertiginosa de quase 2,1 milhões de quilômetros por hora!

O cometa foi descoberto na semana passada em imagens obtidas em 04 de agosto de 2016 pelo coronógrafo LASCO C2 do observatório espacial SOHO, este cometa é um membro da família Kreutz, um grupo de cometas com órbitas semelhantes resultante da fragmentação de um único progenitor, há aproximadamente 2.500 anos.

Aparentemente, este fragmento não sobreviveu à viagem. Tal como muitos outros cometas rasantes, esta pequena bola de gelo e poeira foi provavelmente esmagada e vaporizada pelo ambiente infernal que rodeia a nossa estrela.

Fonte: NASA & ESA